

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4022B
MSI
4-stage divide-by-8 Johnson
counter

Product specification
File under Integrated Circuits, IC04

January 1995

4-stage divide-by-8 Johnson counter

HEF4022B
MSI

4-STAGE DIVIDE-BY-8 JOHNSON COUNTER

The HEF4022B is a 4-stage divide-by-8 Johnson counter with eight spike-free decoded active HIGH outputs (O_0 to O_7), an active LOW output from the most significant flip-flop (\bar{O}_{4-7}), active HIGH and active LOW clock inputs (CP_0 , \bar{CP}_1) and an overriding asynchronous master reset input (MR).

The counter is advanced by either a LOW to HIGH transition at CP_0 while \bar{CP}_1 is LOW or a HIGH to LOW transition at \bar{CP}_1 while CP_0 is HIGH (see also function table). Either CP_0 or \bar{CP}_1 may be used as clock input to the counter and the other clock input may be used as a clock enable input. When cascading counters, the \bar{O}_{4-7} output, which is LOW while the counter is in states, 4, 5, 6 and 7, can be used to drive the CP_0 input of the next counter.

A HIGH on MR resets the counter to zero ($O_0 = \bar{O}_{4-7} = \text{HIGH}$; O_1 to $O_7 = \text{LOW}$) independent of the clock inputs (CP_0 , \bar{CP}_1).

Automatic code correction of the counter is provided by an internal circuit, following any illegal code the counter returns to a proper counting mode within 11 clock pulses.

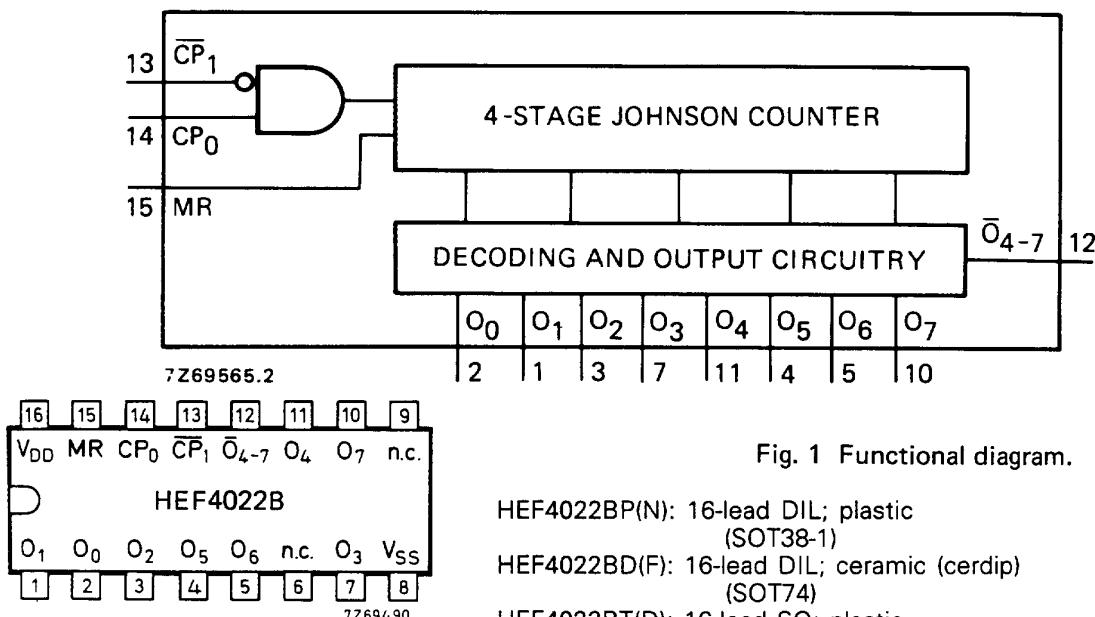


Fig. 2 Pinning diagram.

Fig. 1 Functional diagram.

HEF4022BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4022BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4022BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

 CP_0 clock input (LOW to HIGH; edge-triggered) \bar{CP}_1 clock input (HIGH to LOW; edge-triggered)

MR master reset input

 O_0 to O_7 decoded outputs \bar{O}_{4-7} carry output (active LOW)

FAMILY DATA

IDD LIMITS category MSI

} see Family Specifications

4-stage divide-by-8 Johnson counter

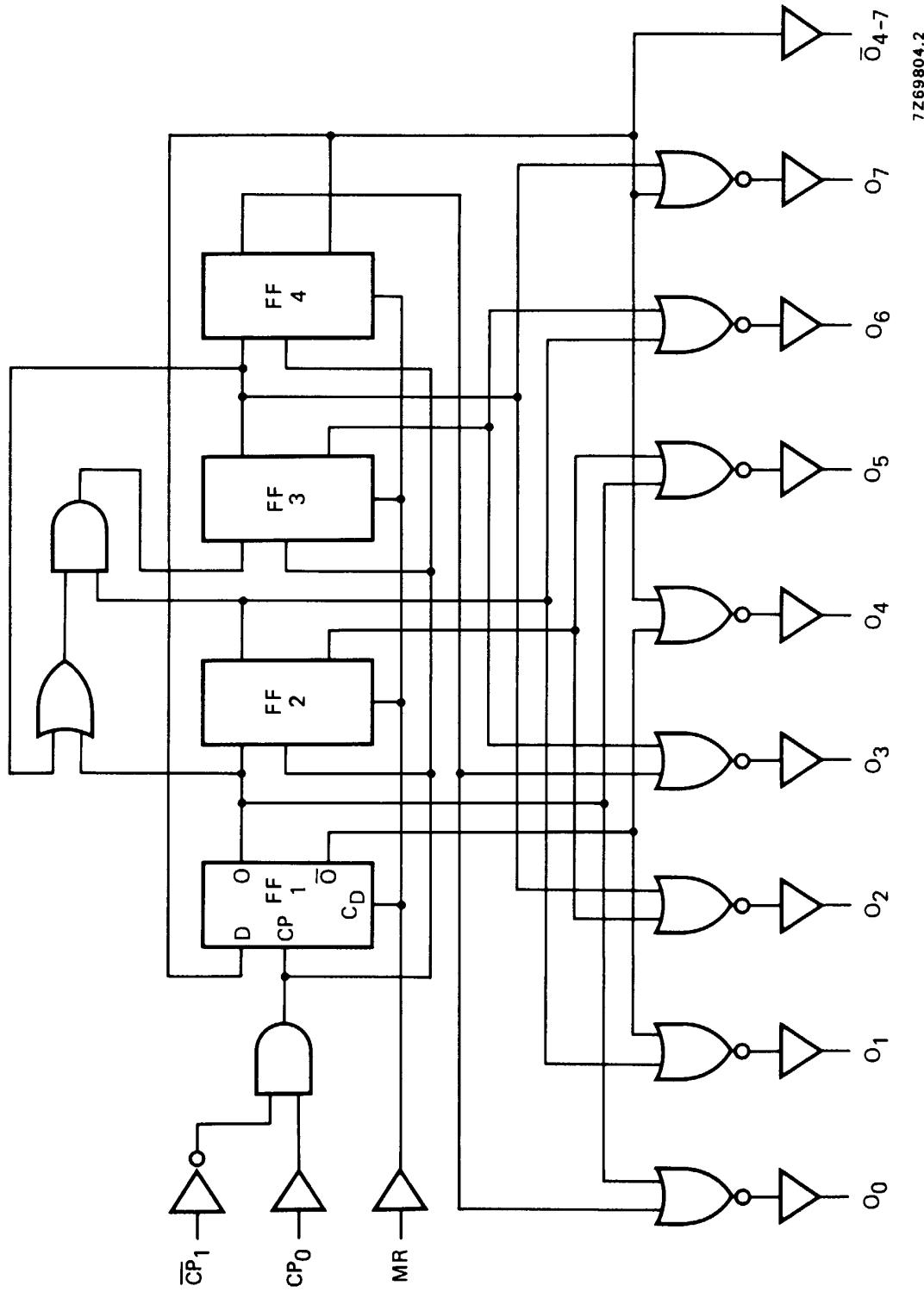

HEF4022B
MSI

Fig. 3 Logic diagram.

4-stage divide-by-8 Johnson counter

HEF4022B
MSI

FUNCTION TABLE

MR	CP ₀	CP ₁	operation
H	X	X	O ₀ = O ₄₋₇ = H; O ₁ to O ₇ = L
L	H	\	Counter advances
L	/	L	Counter advances
L	L	X	No change
L	X	H	No change
L	H	/	No change
L	\	L	No change

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)
 X = state is immaterial
 / = positive-going transition
 \ = negative-going transition

A.C. CHARACTERISTICS

V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times ≤ 20 ns

	V _{DD} V	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays						
CP ₀ , CP ₁ → O _n HIGH to LOW	5 10 15	t _{PHL}	195 75 50	390 ns 145 ns 100 ns		168 ns + (0,55 ns/pF) C _L 64 ns + (0,23 ns/pF) C _L 42 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	t _{PLH}	245 95 60	485 ns 195 ns 125 ns		218 ns + (0,55 ns/pF) C _L 84 ns + (0,23 ns/pF) C _L 52 ns + (0,16 ns/pF) C _L
CP ₀ , CP ₁ → O ₄₋₇ HIGH to LOW	5 10 15	t _{PHL}	245 90 60	485 ns 185 ns 120 ns		218 ns + (0,55 ns/pF) C _L 79 ns + (0,23 ns/pF) C _L 52 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	t _{PLH}	190 75 50	380 ns 145 ns 105 ns		163 ns + (0,55 ns/pF) C _L 64 ns + (0,23 ns/pF) C _L 42 ns + (0,16 ns/pF) C _L
MR → O ₁ to O ₇ HIGH to LOW	5 10 15	t _{PHL}	130 55 40	260 ns 105 ns 75 ns		103 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
MR → O ₀ LOW to HIGH	5 10 15	t _{PLH}	130 55 40	260 ns 105 ns 75 ns		103 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
MR → O ₄₋₇ LOW to HIGH	5 10 15	t _{PLH}	110 45 35	220 ns 90 ns 70 ns		83 ns + (0,55 ns/pF) C _L 34 ns + (0,23 ns/pF) C _L 27 ns + (0,16 ns/pF) C _L
Output transition times						
HIGH to LOW	5 10 15	t _{THL}	60 30 20	120 ns 60 ns 40 ns		10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L
LOW to HIGH	5 10 15	t _{TLH}	60 30 20	120 ns 60 ns 40 ns		10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L

4-stage divide-by-8 Johnson counter

HEF4022B
MSI

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; $C_L = 50 \text{ pF}$; input transition times $\leq 20 \text{ ns}$

	V_{DD} V	symbol	min.	typ.	max.	
Hold times $CP_0 \rightarrow \overline{CP}_1$	5	t_{hold}	140	70	ns	see also waveforms Figs 4 and 5
	10		50	25	ns	
	15		30	15	ns	
	5		170	85	ns	
	10		60	30	ns	
	15		40	20	ns	
Minimum clock pulse width	5	t_{WCP}	75	35	ns	see also waveforms Figs 4 and 5
	10		30	15	ns	
	15		20	10	ns	
Minimum MR pulse width; HIGH	5	t_{WMRH}	70	35	ns	see also waveforms Figs 4 and 5
	10		30	15	ns	
	15		20	10	ns	
Recovery time for MR	5	t_{RMR}	30	10	ns	see also waveforms Figs 4 and 5
	10		15	5	ns	
	15		10	5	ns	
Maximum clock pulse frequency	5	f_{max}	3	6	MHz	see also waveforms Figs 4 and 5
	10		8	16	MHz	
	15		12	24	MHz	

	V_{DD} V	typical formula for P (μW)	where
Dynamic power dissipation per package (P)	5 10 15	$475 f_i + \Sigma(f_o C_L) \times V_{DD}^2$ $2400 f_i + \Sigma(f_o C_L) \times V_{DD}^2$ $6700 f_i + \Sigma(f_o C_L) \times V_{DD}^2$	$f_i = \text{input freq. (MHz)}$ $f_o = \text{output freq. (MHz)}$ $C_L = \text{load capacitance (pF)}$ $\Sigma(f_o C_L) = \text{sum of outputs}$ $V_{DD} = \text{supply voltage (V)}$

4-stage divide-by-8 Johnson counter

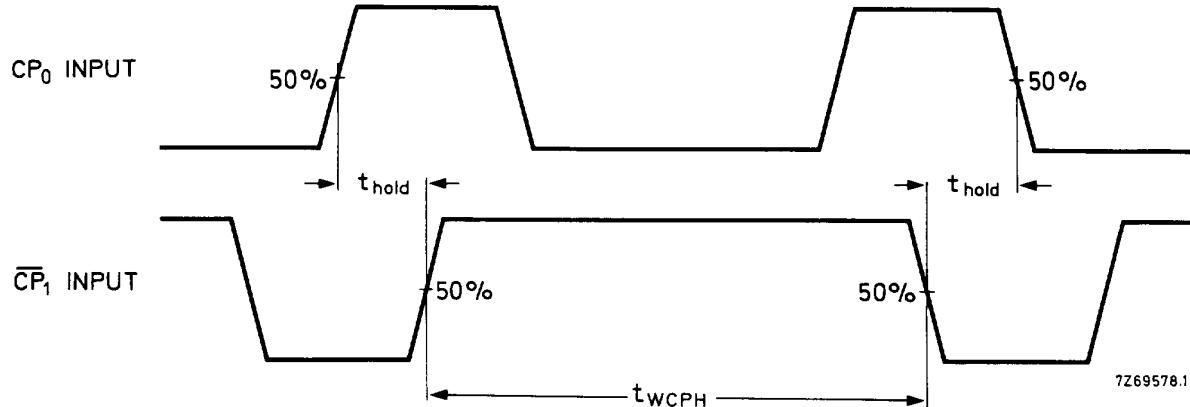

HEF4022B
MSI

Fig. 4 Waveforms showing hold times for CP_0 to \overline{CP}_1 and \overline{CP}_1 to CP_0 .
Hold times are shown as positive values, but may be specified as negative values.

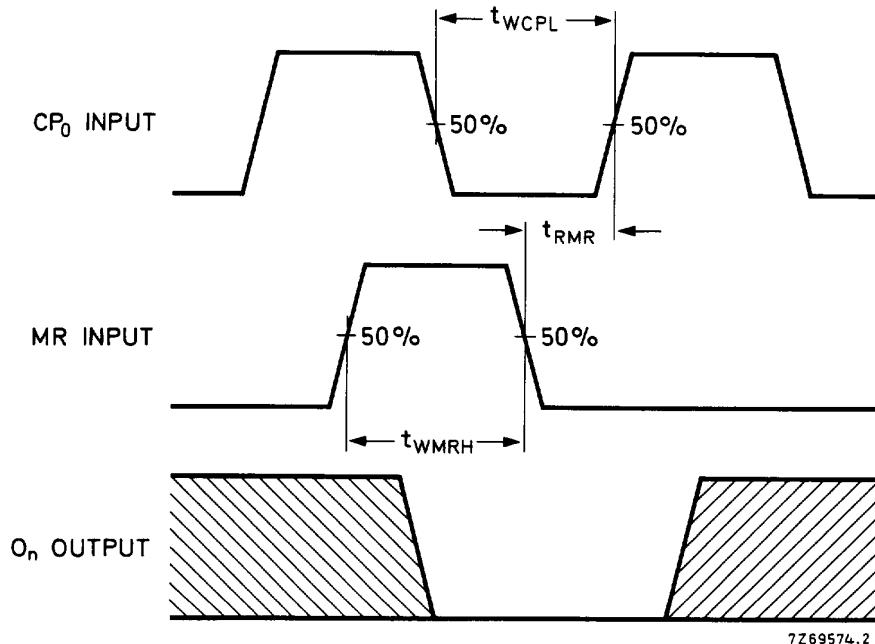


Fig. 5 Waveforms showing recovery time for MR; minimum CP_0 and MR pulse widths.
Conditions: \overline{CP}_1 = LOW while CP_0 is triggered on a LOW to HIGH transition.
 t_{WCP} and t_{RMR} also apply when CP_0 = HIGH and \overline{CP}_1 is triggered on a HIGH to LOW transition.

4-stage divide-by-8 Johnson counter

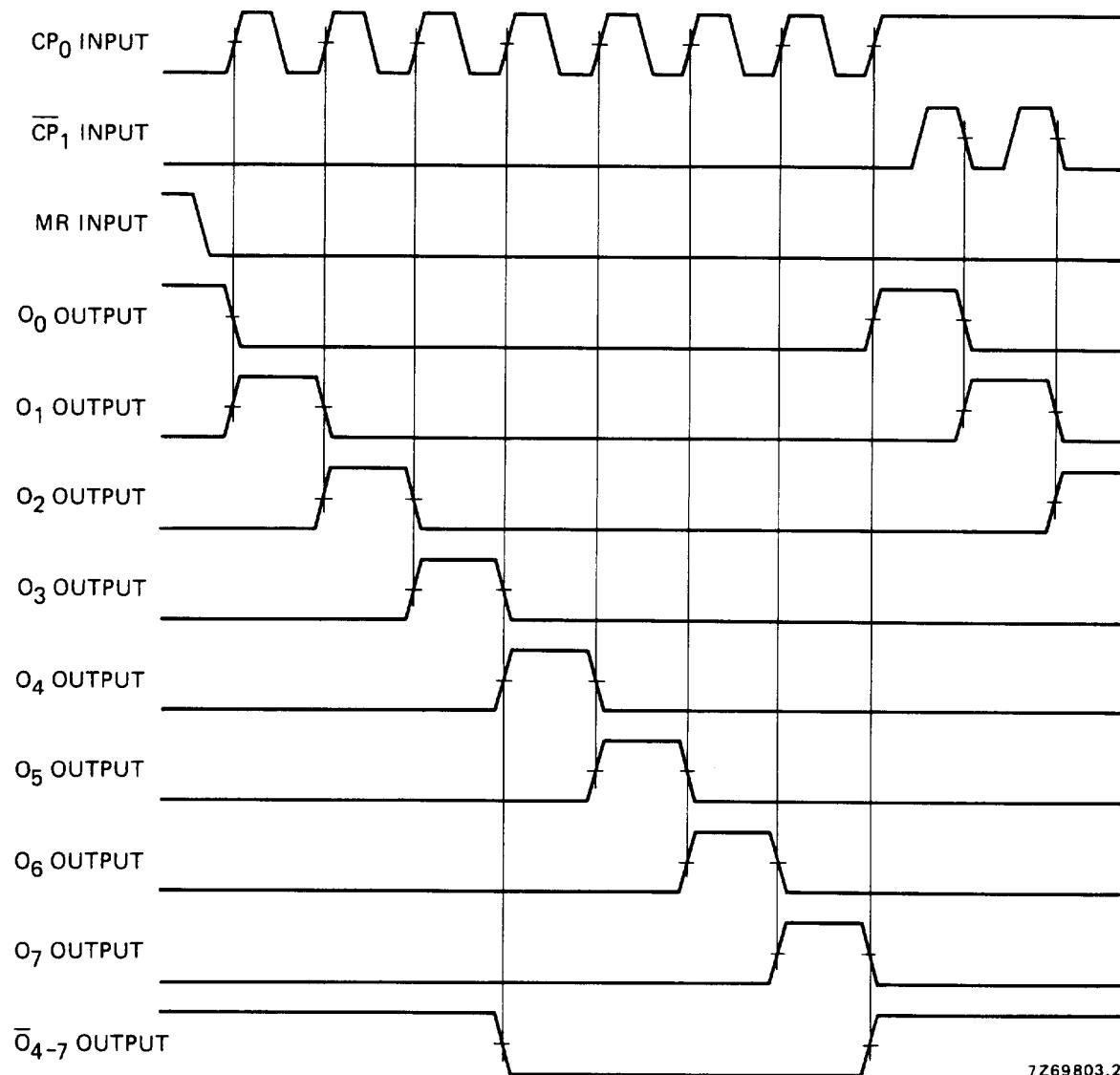

HEF4022B
MSI

Fig. 6 Timing diagram.

4-stage divide-by-8 Johnson counter

HEF4022B
MSI

APPLICATION INFORMATION

Some of the features of the HEF4022B are:

- High speed
- Spike-free decoded outputs
- Carry output for cascading

Figure 7 shows a technique for extending the number of decoded output states for the HEF4022B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

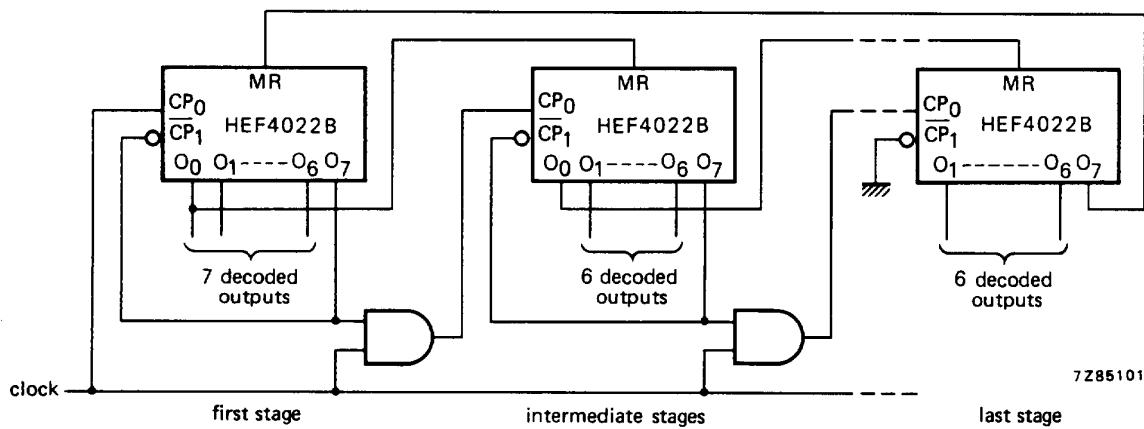


Fig. 7 Counter expansion.